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The magic of deep machine learning (DML)

Neural networks that can beat Go grandmasters

Networks that have better than human accuracy at
classifying images in over 100 categories

Making still pictures move realistically
Super-resolution versions of very old film clips

Realistic, high-resolution, images of people that
have never existed

Realistic insertion of people into video clips

Network generated music and writing that passes
for human created

How can this technology be leveraged for physics
and engineering?
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Not a real person. At least, as far
as we know.
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Shocks in additively manufactured materials

Additively manufactured structures are being investigated for use in production
roles

Printed materials can have highly varying material properties

Complex structures can yield interesting response properties
We investigate one type of these materials undergoing high-velocity impact




Shocks in additively manufactured materials

« Data set consists of 155 Ale3D simulations
« Shock through 3D structure over 1 us sampled every 0.025 us
« Parallel-beam radiograph generated at every timestep

« Simulations varied:

— Ligament radius

— Ligament spacing

— Impact velocity

— Relative strength of ligament material
» Result is 6355 radiograph images

« We focus on inferring the ligament strength from the radiograph
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Methods for inverse problems
Inverse problems focus on calculating causal

factors from observations
Inverse problems are often ill-posed

Hadamard’s well-posedness
1. A solution exists
2. The solution is unique

Rf(t,w) = /Rf(tw + swh) ds

3. The solution depends continuously on the data
Example: Radon transform in X-ray imaging

Forward model of X-ray data is well-posed

Despite a direct inverse formula,
experimental sampling can make
reconstructing the absorption ill-posed
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f(z)

The Radon transform

= L/ /eiﬂx’wévf(r,w)wdrdw
47T2 0 R

Direct inversion of Radon transform




Methods for inverse problems

To deal with ill-posedness and noise in measurement a variational approach is
often used

The forward map, 7 : X — Y, yields the data § = T(ftrue) +0g

Aloss function, £ : Y X Y — R, characterizes the agreement of a
reconstruction, f with the data, §

2
Example: L(T(f),g)=|T(f)— 9”2
Regularizer,S : X — IR, adds a priori constraints on reconstruction
Example: SU) = flrv = IV £

Variational methods then solve the optimization

]l;réi% IL(T(f),g) + AS(f)] for a fixed A > 0
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Methods for inverse problems

 Variational methods:
— Make the problem less ill-posed
— Add prior information not in data

* Variational methods do not:
— Characterize non-uniqueness
— Characterize effect of observation noise

 Instead formulate the variational optimization as a Bayesian posterior distribution

~ Likelihood: p(glf) =exp (=L(T(f),q))
- Prior: p(f) = exp (—)\S(f))

- Posterior: p(f|g) X p(g‘f)p(f)
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The “data-driven” approach to inverse problems

- With deep ML we can process 10° high-dimensional data points to learn
mappings

« With access to the forward map, T: X — Y, wecan generate large samples
of (f, g) pairs. Training datasets.

* A neural network can then learn the mapping:
—1
T :g— f

« A priori information is encoded by sampling, f € M
» Learn the restricted mapping:

T/\jllzg%féf\/l



The “data-driven” approach to inverse problems

« Advantages over variational and Bayesian approaches
— Can encode much more complex a priori information through sampling
— Optimization does not have to be performed for each new data point
— Regularization parameters do not have to be tuned
— Can solve the problem for multiple a priori conditions simultaneously

 Difference between physical inverse problems and standard DML application
domains
— In imaging challenges, extrapolation outside of the sample manifold is not expected
— Many DML results are subjective (e.g. "Does this image or video look real?”)

— When generating training data from physics simulation there is often model error from
experimental observation

— For physical experiment, observation data can be extremely limited.
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Inferring relative strength from radiographs

« We try to learn relative strength from a radiograph
o Input: Radiograph Radiograph Radiograph

- Radiograph (256 x 512)

1.4 1 1.4 1 1.4 1
- XY—pixel size - 0.99 - 0.99 " 0.99
— Observation time
- Ligament radius ’g“)' 0-985 gw‘ o.gsgg“" 038
— Ligament spacing 200 : 200 géoa
— Impact velocity % 06 0978 % o 0978 % o 097

» Output: o
- Relative Strength

o
'S

0.96 0.96 0.96

0.2 1 0.2 0.2

0.0

0.95 0. 0.95 0.0

« Training considerations: | , _
— Training, Validation, Testing (TVT) split: 70/20/1 Yaxis (um) RIS EaxiS (i)
— Batchsize: 8 data points used for each gradient descent step
- Learning rate: Optimization step scaled by 0.001

0.95
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What is a convolutional layer?

Probability

Sliding window

[ By My

RelLU

ctified linear

i EE0
= * * .-. = X2 )
o Gl o
complex shapes shapes that can be . O_ e g
) ;m‘:.‘ to define a flower o : g Tree
\» ’{ - ’J/‘ °- j - /4 : —— g
FC

Every feature map output is the
result of applying a filter to the image

The new feature map is the next input

Activations of the network at a w

https://www.mathworks.com/help/nnet/ug/introduction-to-convolutional-neural-networks.html

 Filters are not prescribed, instead "learned” by fitting to training data
« Separate image “channels” are convolved and output is added for each

convolutional layer output
« Addition of non-linear activation makes them much more than a traditional

convolutional filter
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Inferring relative strength from radiographs

input: | [(None, 256,512, 1)]

radiograph_input: InputLayer
grapi-np P 4 output: | [(None, 256,512, 1)]

Radiographs fed to L

. ) ; Input of conditional
initial convolution

variables followed

input: (None, 256,512, 1)
(None, 254,510, 1

FirstConv: Conv2D

output:

P *inpul: (None, 254,510, 16) g input: | [(None. 6)] | by dense |ayerS

ConvReduce_00: Conv2D | | simvars_input: InputLayer

Re peated [ (:utput: (None, 126, 254& I~ | output: | [(None, 6)]_]
ConVOI utions th at input: | (None, 126, 4) input: | (None, 6)

atchedConv: Conv2D simvars_dense_A: Dense

h a Ive i ag e S i Ze output: (None, 1, 1, 16) output: | (None, 8)
input: | (None, 1,1, 16) input: (None, 8)
flatten: Flatten simvars_dense_B: Dense
output: output: [ (None, 16)

input: | [(None, 16), e, 16)]
cogffatenate: Concatenate
output: (None, 32)

, l TR Concatenation of
Matched filter to filtered radiographed
convert image to — l g | (ore and processed inputs
vector — followed by dense

concat_dense_C: Dense input: | (None, 16) Iaye rS

output: [ (None, 8)

NS -
" X input: | (None, 8)
(> linear_dense: Dense
~

output: | (No:




Inferring relative strength from radiographs

Conv2D: Conv2D

) input: | [(None, 256,512, 16)]
filter_input: InputLayer
output: | [(None, 256,512, 16)]
input: | (None, 256,512, 16)

output:

(None, 254, 510, 28)

input:

(None, 254, 510, 28)

dropout: Dropout

output:

(None, 254,510, 28)

4

Standard 2D convolution

Regularization using dropouts
and batch-normalization

(None, 254,510, 28)

input: .5 1
tch_normalization: BatchNormalization P
output: [ (None, 25 , 28)
2.0 A
4 1.5

< activation: Activation

input:

(None, 254, 510, 28) |

Nonlinearities

2.5

output:

(None, 254, 510, 28)‘ﬁ

—

/

Components of a standard
“convolutional layer”

—— RelU
= GELU
—¥ 0.
0.5 1
00{ ———
2 -1 o0 1 2

upload.wikimedia.org/wikipedia/commons/4/42/ReLU_and_GELU.svg



Inferring relative strength from radiographs
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Open questions for deep ML applications to physics
inference

* When the experimental data is sparse, how do you characterize simulation
error?

« |If simulations form our training sets can we use deep ML to discover new
physics models?

« How stable are the features learned through the neural network approach?

« How do we know if an inference problem is tractable without training a
network?

« How do quantify the “optimality” of a network architecture?
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